
Design and Implementation of the lwIP
TCP/IP Stack

Swedish Institute of Computer Science

February 20, 2001

Adam Dunkels

adam@sics.se

Abstract

lwIP is an implementation of the TCP/IP protocol stack. The focus of the lwIP stack is to
reduce memory usage and code size, making lwIP suitable for use in small clients with very
limited resources such as embedded systems. In order to reduce processing and memory demands,
lwIP uses a tailor made API that does not require any data copying.

This report describes the design and implementation of lwIP. The algorithms and data struc-
tures used both in the protocol implementations and in the sub systems such as the memory and
buffer management systems are described. Also included in this report is a reference manual for
the lwIP API and some code examples of using lwIP.

Contents

1 Introduction 1

2 Protocol layering 1

3 Overview 2

4 Process model 2

5 The operating system emulation layer 3

6 Buffer and memory management 3
6.1 Packet buffers — pbufs . 3
6.2 Memory management . 5

7 Network interfaces 5

8 IP processing 7
8.1 Receiving packets . 7
8.2 Sending packets . 7
8.3 Forwarding packets . 8
8.4 ICMP processing . 8

9 UDP processing 8

10 TCP processing 9
10.1 Overview . 9
10.2 Data structures . 10
10.3 Sequence number calculations . 12
10.4 Queuing and transmitting data . 12

10.4.1 Silly window avoidance . 13
10.5 Receiving segments . 13

10.5.1 Demultiplexing . 13
10.5.2 Receiving data . 14

10.6 Accepting new connections . 14
10.7 Fast retransmit . 14
10.8 Timers . 14
10.9 Round-trip time estimation . 15
10.10Congestion control . 15

11 Interfacing the stack 15

12 Application Program Interface 16
12.1 Basic concepts . 16
12.2 Implementation of the API . 17

13 Statistical code analysis 17
13.1 Lines of code . 18
13.2 Object code size . 19

14 Performance analysis 20

15 API reference 21
15.1 Data types . 21

15.1.1 Netbufs . 21
15.2 Buffer functions . 21

15.2.1 netbuf new() . 21
15.2.2 netbuf delete() . 21
15.2.3 netbuf alloc() . 22
15.2.4 netbuf free() . 22
15.2.5 netbuf ref() . 22
15.2.6 netbuf len() . 23
15.2.7 netbuf data() . 23
15.2.8 netbuf next() . 23
15.2.9 netbuf first() . 24
15.2.10netbuf copy() . 24
15.2.11netbuf chain() . 24
15.2.12netbuf fromaddr() . 24
15.2.13netbuf fromport() . 25

16 Network connection functions 25
16.0.14netconn new() . 25
16.0.15netconn delete() . 25
16.0.16netconn type() . 25
16.0.17netconn peer() . 25
16.0.18netconn addr() . 26
16.0.19netconn bind() . 26
16.0.20netconn connect() . 26
16.0.21netconn listen() . 26
16.0.22netconn accept() . 26
16.0.23netconn recv() . 27
16.0.24netconn write() . 28
16.0.25netconn send() . 29
16.0.26netconn close() . 30

17 BSD socket library 30
17.1 The representation of a socket . 30
17.2 Allocating a socket . 30

17.2.1 The socket() call . 30
17.3 Connection setup . 31

17.3.1 The bind() call . 31
17.3.2 The connect() call . 31
17.3.3 The listen() call . 32
17.3.4 The accept() call . 32

17.4 Sending and receiving data . 33
17.4.1 The send() call . 33
17.4.2 The sendto() and sendmsg() calls . 34
17.4.3 The write() call . 34
17.4.4 The recv() and read() calls . 35
17.4.5 The recvfrom() and recvmsg() calls . 36

18 Code examples 36
18.1 Using the API . 36
18.2 Directly interfacing the stack . 39

Bibliography 41

2 PROTOCOL LAYERING

1 Introduction

Over the last few years, the interest for connecting computers and computer supported devices
to wireless networks has steadily increased. Computers are becoming more and more seamlessly
integrated with everyday equipment and prices are dropping. At the same time wireless networking
technologies, such as Bluetooth [HNI+98] and IEEE 802.11b WLAN [BIG+97], are emerging. This
gives rise to many new fascinating scenarios in areas such as health care, safety and security,
transportation, and processing industry. Small devices such as sensors can be connected to an
existing network infrastructure such as the global Internet, and monitored from anywhere.

The Internet technology has proven itself flexible enough to incorporate the changing network
environments of the past few decades. While originally developed for low speed networks such as
the ARPANET, the Internet technology today runs over a large spectrum of link technologies with
vastly different characteristics in terms of bandwidth and bit error rate. It is highly advantageous
to use the existing Internet technology in the wireless networks of tomorrow since a large amount
of applications using the Internet technology have been developed. Also, the large connectivity of
the global Internet is a strong incentive.

Since small devices such as sensors are often required to be physically small and inexpensive, an
implementation of the Internet protocols will have to deal with having limited computing resources
and memory. This report describes the design and implementation of a small TCP/IP stack called
lwIP that is small enough to be used in minimal systems.

This report is structured as follows. Sections 2, 3, and 4 give an overview of the lwIP stack,
Section 5 describes the operating system emulation layer, Section 6 describes the memory and
buffer management. Section 7 introduces the network interface abstraction of lwIP, and Sections
8, 9, and 10 describe the implementation of the IP, UDP and TCP protocols. The Sections 11
and 12 describe how to interface with lwIP and introduce the lwIP API. Sections 13 and 14
analyze the implementation. Finally, Section 15 provides a reference manual for the lwIP API
and Sections 17 and 18 show various code examples.

2 Protocol layering

The protocols in the TCP/IP suite are designed in a layered fashion, where each protocol layer
solves a separate part of the communication problem. This layering can serve as a guide for
designing the implementation of the protocols, in that each protocol can be implemented separately
from the other. Implementing the protocols in a strictly layered way can however, lead to a
situation where the communication overhead between the protocol layers degrades the overall
performance [Cla82a]. To overcome these problems, certain internal aspects of a protocol can be
made known to other protocols. Care must be taken so that only the important information is
shared among the layers.

Most TCP/IP implementations keep a strict division between the application layer and the
lower protocol layers, whereas the lower layers can be more or less interleaved. In most operating
systems, the lower layer protocols are implemented as a part of the operating system kernel with
entry points for communication with the application layer process. The application program is
presented with an abstract view of the TCP/IP implementation, where network communication
differs only very little from inter-process communication or file I/O. The implications of this is
that since the application program is unaware of the buffer mechanisms used by the lower layers,
it cannot utilize this information to, e.g., reuse buffers with frequently used data. Also, when the
application sends data, this data has to be copied from the application process’ memory space
into internal buffers before being processed by the network code.

The operating systems used in minimal systems such as the target system of lwIP most often
do not maintain a strict protection barrier between the kernel and the application processes. This
allows using a more relaxed scheme for communication between the application and the lower
layer protocols by the means of shared memory. In particular, the application layer can be made
aware of the buffer handling mechanisms used by the lower layers. Therefore, the application can

1

4 PROCESS MODEL

more efficiently reuse buffers. Also, since the application process can use the same memory as the
networking code the application can read and write directly to the internal buffers, thus saving
the expense of performing a copy.

3 Overview

As in many other TCP/IP implementations, the layered protocol design has served as a guide
for the design of the implementation of lwIP. Each protocol is implemented as its own module,
with a few functions acting as entry points into each protocol. Even though the protocols are
implemented separately, some layer violations are made, as discussed above, in order to improve
performance both in terms of processing speed and memory usage. For example, when verifying
the checksum of an incoming TCP segment and when demultiplexing a segment, the source and
destination IP addresses of the segment has to be known by the TCP module. Instead of passing
these addresses to TCP by the means of a function call, the TCP module is aware of the structure
of the IP header, and can therefore extract this information by itself.

lwIP consists of several modules. Apart from the modules implementing the TCP/IP protocols
(IP, ICMP, UDP, and TCP) a number of support modules are implemented. The support modules
consists of the operating system emulation layer (described in Section 5), the buffer and memory
management subsystems (described in Section 6), network interface functions (described in Section
7), and functions for computing the Internet checksum. lwIP also includes an abstract API, which
is described in Section 12.

4 Process model

The process model of a protocol implementation describes in which way the system has been di-
vided into different processes. One process model that has been used to implement communication
protocols is to let each protocol run as a stand alone process. With this model, a strict protocol
layering is enforced, and the communication points between the protocols must be strictly defined.
While this approach has its advantages such as protocols can be added at runtime, understanding
the code and debugging is generally easier, there are also disadvantages. The strict layering is
not, as described earlier, always the best way to implement protocols. Also, and more important,
for each layer crossed, a context switch must be made. For an incoming TCP segment this would
mean three context switches, from the device driver for the network interface, to the IP process,
to the TCP process and finally to the application process. In most operating systems a context
switch is fairly expensive.

Another common approach is to let the communication protocols reside in the kernel of the
operating system. In the case of a kernel implementation of the communication protocols, the
application processes communicate with the protocols through system calls. The communication
protocols are not strictly divided from each other but may use the techniques of crossing the
protocol layering.

lwIP uses a process model in which all protocols reside in a single process and are thus sep-
arated from the operating system kernel. Application programs may either reside in the lwIP
process, or be in separate processes. Communication between the TCP/IP stack and the applica-
tion programs are done either by function calls for the case where the application program shares
a process with lwIP, or by the means of a more abstract API.

Having lwIP implemented as a user space process rather than in the operating system kernel
has both its advantages and disadvantages. The main advantage of having lwIP as a process is that
is portable across different operating systems. Since lwIP is designed to run in small operating
systems that generally do not support neither swapping out processes not virtual memory, the
delay caused by having to wait for disk activity if part of the lwIP process is swapped or paged
out to disk will not be a problem. The problem of having to wait for a scheduling quantum before
getting a chance to service requests still is a problem however, but there is nothing in the design

2

6 BUFFER AND MEMORY MANAGEMENT

of lwIP that precludes it from later being implemented in an operating system kernel.

5 The operating system emulation layer

In order to make lwIP portable, operating system specific function calls and data structures are not
used directly in the code. Instead, when such functions are needed the operating system emulation
layer is used. The operating system emulation layer provides a uniform interface to operating
system services such as timers, process synchronization, and message passing mechanisms. In
principle, when porting lwIP to other operating systems only an implementation of the operating
system emulation layer for that particular operating system is needed.

The operating system emulation layer provides a timer functionality that is used by TCP. The
timers provided by the operating system emulation layer are one-shot timers with a granularity of
at least 200 ms that calls a registered function when the time-out occurs.

The only process synchronization mechanism provided is semaphores. Even if semaphores are
not avaliable in the underlying operating system they can be emulated by other synchronization
primitives such as conditional variables or locks.

The message passing is done through a simple mechanism which uses an abstraction called
mailboxes. A mailbox has two operations: post and fetch. The post operation will not block the
process; rather, messages posted to a mailbox are queued by the operating system emulation layer
until another process fetches them. Even if the underlying operating system does not have native
support for the mailbox mechanism, they are easily implemented using semaphores.

6 Buffer and memory management

The memory and buffer management system in a communication system must be prepared to
accommodate buffers of very varying sizes, ranging from buffers containing full-sized TCP segments
with several hundred bytes worth of data to short ICMP echo replies consisting of only a few bytes.
Also, in order to avoid copying it should be possible to let the data content of the buffers reside in
memory that is not managed by the networking subsystem, such as application memory or ROM.

6.1 Packet buffers — pbufs

A pbuf is lwIP’s internal representation of a packet, and is designed for the special needs of
the minimal stack. Pbufs are similar to the mbufs used in the BSD implementations. The pbuf
structure has support both for allocating dynamic memory to hold packet contents, and for letting
packet data reside in static memory. Pbufs can be linked together in a list, called a pbuf chain so
that a packet may span over several pbufs.

Pbufs are of three types, PBUF RAM, PBUF ROM, and PBUF POOL. The pbuf shown in
Figure 1 represents the PBUF RAM type, and has the packet data stored in memory managed by
the pbuf subsystem. The pbuf in Figure 2 is an example of a chained pbuf, where the first pbuf
in the chain is of the PBUF RAM type, and the second is of the PBUF ROM type, which means
that it has the data located in memory not managed by the pbuf system. The third type of pbuf,
PBUF POOL, is shown in Figure 3 and consists of fixed size pbufs allocated from a pool of fixed
size pbufs. A pbuf chain may consist of multiple types of pbufs.

The three types have different uses. Pbufs of type PBUF POOL are mainly used by network
device drivers since the operation of allocating a single pbuf is fast and is therefore suitable for
use in an interrupt handler. PBUF ROM pbufs are used when an application sends data that is
located in memory managed by the application. This data may not be modified after the pbuf
has been handed over to the TCP/IP stack and therefore this pbuf type main use is when the
data is located in ROM (hence the name PBUF ROM). Headers that are prepended to the data
in a PBUF ROM pbuf are stored in a PBUF RAM pbuf that is chained to the front of of the
PBUF ROM pbuf, as in Figure 2.

3

6 BUFFER AND MEMORY MANAGEMENT 6.1 Packet buffers — pbufs

Room for link header

next

payload

len

tot_len

flags ref

Room for TCP header

Room for IP header

Figure 1. A PBUF RAM pbuf with data in memory managed by the pbuf subsystem.

next

payload

len

tot_len

flags ref

next

payload

len

tot_len

flags ref

Figure 2. A PBUF RAM pbuf chained with a PBUF ROM pbuf that has data in external
memory.

Pbufs of the PBUF RAM type are also used when an application sends data that is dynamically
generated. In this case, the pbuf system allocates memory not only for the application data, but
also for the headers that will be prepended to the data. This is seen in Figure 1. The pbuf system
cannot know in advance what headers will be prepended to the data and assumes the worst case.
The size of the headers is configurable at compile time.

In essence, incoming pbufs are of type PBUF POOL and outgoing pbufs are of the PBUF ROM
or PBUF RAM types.

The internal structure of a pbuf can be seen in the Figures 1 through 3. The pbuf structure
consists of two pointers, two length fields, a flags field, and a reference count. The next field is a
pointer to the next pbuf in case of a pbuf chain. The payload pointer points to the start of the
data in the pbuf. The len field contains the length of the data contents of the pbuf. The tot len
field contains the sum of the length of the current pbuf and all len fields of following pbufs in
the pbuf chain. In other words, the tot len field is the sum of the len field and the value of the
tot len field in the following pbuf in the pbuf chain. The flags field indicates the type of the
pbuf and the ref field contains a reference count. The next and payload fields are native pointers
and the size of those varies depending on the processor architecture used. The two length fields

4

7 NETWORK INTERFACES 6.2 Memory management

next

payload

len

tot_len

flags ref

next

payload

len

tot_len

flags ref

next

payload

len

tot_len

flags ref

Figure 3. A chained PBUF POOL pbuf from the pbuf pool.

are 16 bit unsigned integers and the flags and ref fields are 4 bit wide. The total size of the
pbuf structure depends on the size of a pointer in the processor architecture being used and on the
smallest alignment possible for the processor architecture. On an architecture with 32 bit pointers
and 4 byte alignment, the total size is 16 bytes and on an architecture with 16 bit pointers and 1
byte alignment, the size is 9 bytes.

The pbuf module provides functions for manipulation of pbufs. Allocation of a pbuf is done
by the function pbuf_alloc() which can allocate pbufs of any of the three types described above.
The function pbuf_ref() increases the reference count. Deallocation is made by the function
pbuf_free(), which first decreases the reference count of the pbuf. If the reference count reaches
zero the pbuf is deallocated. The function pbuf_realloc() shrinks the pbuf so that it occupies
just enough memory to cover the size of the data. The function pbuf_header() adjusts the
payload pointer and the length fields so that a header can be prepended to the data in the pbuf.
The functions pbuf_chain() and pbuf_dechain() are used for chaining pbufs.

6.2 Memory management

The memory manager supporting the pbuf scheme is very simple. It handles allocations and
deallocations of contiguous regions of memory and can shrink the size of a previously allocated
memory block. The memory manager uses a dedicated portion of the total memory in the system.
This ensures that the networking system does not use all of the available memory, and that the
operation of other programs is not disturbed if the networking system has used all of it’s memory.

Internally, the memory manager keeps track of the allocated memory by placing a small struc-
ture on top of each allocated memory block. This structure (Figure 4) holds two pointers to the
next and previous allocation block in memory. It also has a used flag which indicates whether the
allocation block is allocated or not.

Memory is allocated by searching the memory for an unused allocation block that is large
enough for the requested allocation. The first-fit principle is used so that the first block that is
large enough is used. When an allocation block is deallocated, the used flag is set to zero. In order
to prevent fragmentation, the used flag of the next and previous allocation blocks are checked. If
any of them are unused, the blocks are combined into one larger unused block.

7 Network interfaces

In lwIP device drivers for physical network hardware are represented by a network interface
structure similar to that in BSD. The network interface structure is shown in Figure 5. The
network interfaces are kept on a global linked list, which is linked by the next pointer in the
structure.

Each network interface has a name, stored in the name field in Figure 5. This two letter
name identifies the kind of device driver used for the network interface and is only used when the

5

7 NETWORK INTERFACES

used = 1

next

prev

used = 1

used = 0

next

prev

next

prev

Figure 4. The memory allocation structure.

struct netif {
struct netif *next;
char name[2];
int num;
struct ip_addr ip_addr;
struct ip_addr netmask;
struct ip_addr gw;
void (* input)(struct pbuf *p, struct netif *inp);
int (* output)(struct netif *netif, struct pbuf *p,

struct ip_addr *ipaddr);
void *state;

};

Figure 5. The netif structure.

interface is configured by a human operator at runtime. The name is set by the device driver and
should reflect the kind of hardware that is represented by the network interface. For example, a
network interface for a Bluetooth driver might have the name bt and a network interface for IEEE
802.11b WLAN hardware could have the name wl. Since the names not necessarily are unique,
the num field is used to distinguish different network interfaces of the same kind.

The three IP addresses ip addr, netmask and gw are used by the IP layer when sending and
receiving packets, and their use is described in the next section. It is not possible to configure a
network interface with more than one IP address. Rather, one network interface would have to be
created for each IP address.

The input pointer points to the function the device driver should call when a packet has been
received.

A network interface is connected to a device driver through the output pointer. This pointer
points to a function in the device driver that transmits a packet on the physical network and it is
called by the IP layer when a packet is to be sent. This field is filled by the initialization function
of the device driver. The third argument to the output function, ipaddr, is the IP address of
the host that should receive the actual link layer frame. It does not have to be the same as the
destination address of the IP packet. In particular, when sending an IP packet to a host that is
not on the local network, the link level frame will be sent to a router on the network. In this case,
the IP address given to the output function will be the IP address of the router.

Finally, the state pointer points to device driver specific state for the network interface and

6

8 IP PROCESSING

is set by the device driver.

8 IP processing

lwIP implements only the most basic functionality of IP. It can send, receive and forward packets,
but cannot send or receive fragmented IP packets nor handle packets with IP options. For most
applications this does not pose any problems.

8.1 Receiving packets

For incoming IP packets, processing begins when the ip input() function is called by a network
device driver. Here, the initial sanity checking of the IP version field and the header length is
done, as well as computing and checking the header checksum. It is expected that the stack will
not receive any IP fragments since the proxy is assumed to reassemble any fragmented packets,
thus any packet that is an IP fragment is silently discarded. Packets carrying IP options are also
assumed to be handled by the proxy, and are dropped.

Next, the function checks the destination address with the IP addresses of the network interfaces
to determine if the packet was destined for the host. The network interfaces are ordered in a linked
list, and it is searched linearly. The number of network interfaces is expected to be small so a
more sophisticated search strategy than a linear search has not been implemented.

If the incoming packet is found to be destined for this host, the protocol field is used to decide
to which higher level protocol the packet should be passed to.

8.2 Sending packets

An outgoing packet is handled by the function ip output(), which uses the function ip route()
to find the appropriate network interface to transmit the packet on. When the outgoing network
interface is determined, the packet is passed to ip output if() which takes the outgoing network
interface as an argument. Here, all IP header fields are filled in and the IP header checksum is
computed. The source and destination addresses of the IP packet is passed as an argument to
ip output if(). The source address may be left out, however, and in this case the IP address of
the outgoing network interface is used as the source IP address of the packet.

The ip route() function finds the appropriate network interface by linearly searching the list
of network interfaces. During the search the destination IP address of the IP packet is masked
with the netmask of the network interface. If the masked destination address is equal to the
masked IP address of the interface, the interface is chosen. If no match is found, a default network
interface is used. The default network interface is configured either at boot-up or at runtime by a
human operator1. If the network address of the default interface does not match the destination
IP address, the gw field in the network interface structure (Figure 5) is chosen as the destination
IP address of the link level frame. (Notice that the destination address of the IP packet and the
destination address of the link level fram will be different in this case.) This primitive form of
routing glosses over the fact that a network might have many routers attached to it. For the most
basic case, where a local network only has one router, this works however.

Since the transport layer protocols UDP and TCP need to have the destination IP address
when computing the transport layer checksum, the outgoing network interface must in some cases
be determined before the packet is passed to the IP layer. This is done by letting the transport
layer functions call the ip route() function directly, and since the outgoing network interface
is known already when the packet reaches the IP layer, there is no need to search the network
interface list again. Instead, those protocols call the ip output if() function directly. Since this
function takes a network interface as an argument, the search for an outgoing interface is avoided.

1Human configuration of lwIP during runtime requires an application program that is able to configure the
stack. Such a program is not included in lwIP.

7

9 UDP PROCESSING 8.3 Forwarding packets

8.3 Forwarding packets

If none of the network interfaces has the same IP address as an incoming packet’s destination
address, the packet should be forwarded. This is done by the function ip forward(). Here, the
TTL field is decreased and if it reaches zero, an ICMP error message is sent to the original sender of
the IP packet and the packet is discarded. Since the IP header is changed, the IP header checksum
needs to be adjusted. The is no need to recompute the entire checksum, however, since simple
arithmetic can be used to adjust the original IP checksum [MK90, Rij94]. Finally, the packet
is forwarded to the appropriate network interface. The algorithm used to find the appropriate
network interface is the same that is used when sending IP packets.

8.4 ICMP processing

ICMP processing is fairly simple. ICMP packets received by ip input() are handed over to
icmp input(), which decodes the ICMP header and takes the appropriate action. Some ICMP
messages are passed to upper layer protocols and those are taken care of by special functions in the
transport layer. ICMP destination unreachable messages can be sent by transport layer protocols,
in particular by UDP, and the function icmp dest unreach() is used for this.

Transport layer

Network interface layer

ip_output()

netif−>output()

ip_input()

icmp_input()icmp_dest_unreach()

Internetwork layer

Figure 6. ICMP processing

Using ICMP ECHO messages to probe a network is widely used, and therefore ICMP echo
processing is optimized for performance. The actual processing takes place in icmp input(), and
consists of swapping the IP destination and source addresses of the incoming packet, change the
ICMP type to echo reply and adjust the ICMP checksum. The packet is then passed back to the
IP layer for transmission.

9 UDP processing

UDP is a simple protocol used for demultiplexing packets between different processes. The state
for each UDP session is kept in a PCB structure as shown in Figure 7. The UDP PCBs are kept
on a linked list which is searched for a match when a UDP datagram arrives.

The UDP PCB structure contains a pointer to the next PCB in the global linked list of UDP
PCBs. A UDP session is defined by the IP addresses and port numbers of the end-points and
these are stored in the local ip, dest ip, local port and dest port fields. The flags field
indicates what UDP checksum policy that should be used for this session. This can be either to
switch UDP checksumming off completely, or to use UDP Lite [LDP99] in which the checksum
covers only parts of the datagram. If UDP Lite is used, the chksum len field specifies how much
of the datagram that should be checksummed.

The last two arguments recv and recv arg are used when a datagram is received in the session
specified by the PCB. The function pointed to by recv is called when a datagram is received.

8

10 TCP PROCESSING

struct udp_pcb {
struct udp_pcb *next;
struct ip_addr local_ip, dest_ip;
u16_t local_port, dest_port;
u8_t flags;
u16_t chksum_len;
void (* recv)(void *arg, struct udp_pcb *pcb, struct pbuf *p);
void *recv_arg;

};

Figure 7. The udp pcb structure

Due to the simplicity of UDP, the input and output processing is equally simple and follows a
fairly straight line (Figure 8). To send data, the application program calls udp send() which calls
upon udp output(). Here the the necessary checksumming is done and UDP header fields are
filled. Since the checksum includes the IP source address of the IP packet, the function ip route()
is in some cases called to find the network interface to which the packet is to be transmitted. The
IP address of this network interface is used as the source IP address of the packet. Finally, the
packet is turned over to ip output if() for transmission.

ip_route()

Application

Network interface layer

Internetwork layer

udp_output()

netif−>output()

ip_input()

Application layer

udp_input()
udp_send()

Transport layer

ip_output_if()

Figure 8. UDP processing

When a UDP datagram arrives, the IP layer calls the udp input() function. Here, if check-
summing should be used in the session, the UDP checksum is checked and the datagram is demul-
tiplexed. When the corresponding UDP PCB is found, the recv function is called.

10 TCP processing

TCP is a transport layer protocol that provides a reliable byte stream service to the application
layer. TCP is more complex than the other protocols described here, and the TCP code constitutes
50% of the total code size of lwIP.

10.1 Overview

The basic TCP processing (Figure 9) is divided into six functions; the functions tcp input(),
tcp process(), and tcp receive() which are related to TCP input processing, and tcp write(),
tcp enqueue(), and tcp output() which deals with output processing.

9

10 TCP PROCESSING 10.2 Data structures

Application

Network interface layer

Application layer

Internetwork layer

Transport layer

tcp_write()

tcp_enqueue()

tcp_output()

netif->output()

ip_input()

tcp_input()

tcp_process()

tcp_receive()

ip_output_if()ip_route()

Figure 9. TCP processing

When an application wants to send TCP data, tcp write() is called. The function tcp write()
passes control to tcp enqueue() which will break the data into appropriate sized TCP segments
if necessary and put the segments on the transmission queue for the connection. The function
tcp output() will then check if it is possible to send the data, i.e., if there is enough space in the
receiver’s window and if the congestion window is large enough and if so, sends the data using
ip route() and ip output if().

Input processing begins when ip input() after verifying the IP header hands over a TCP
segment to tcp input(). In this function the initial sanity checks (i.e., checksumming and TCP
options parsing) are done as well as deciding to which TCP connection the segment belongs. The
segment is then processed by tcp process(), which implements the TCP state machine, and any
necessary state transitions are made. The function tcp receive() will be called if the connection
is in a state to accept data from the network. If so, tcp receive() will pass the segment up to
an application program. If the segment constitutes an ACK for unacknowledged (thus previously
buffered) data, the data is removed from the buffers and its memory is reclaimed. Also, if an ACK
for data was received the receiver might be willing to accept more data and therefore tcp output()
is called.

10.2 Data structures

The data structures used in the implementation of TCP are kept small due to the memory con-
straints in the minimal system for which lwIP is intended. There is a tradeoff between the
complexity of the data structures and the complexity of the code that uses the data structures,
and in this case the code complexity has been sacrificed in order to keep the size of the data
structures small.

The TCP PCB is fairly large and is shown in Figure 10. Since TCP connections in the LISTEN
and TIME-WAIT needs to keep less state information than connections in other states, a smaller
PCB data structure is used for those connections. This data structure is overlaid with the full PCB
structure, and the ordering of the items in the PCB structure in Figure 10 is therefore somewhat
awkward.

The TCP PCBs are kept on a linked list, and the next pointer links the PCB list together.
The state variable contains the current TCP state of the connection. Next, the IP addresses and
port numbers which identify the connection are stored. The mss variable contains the maximum
segment size allowed for the connection.

The rcv nxt and rcv wnd fields are used when receiving data. The rcv nxt field contains
the next sequence number expected from the remote end and is thus used when sending ACKs

10

10 TCP PROCESSING 10.2 Data structures

to the remote host. The receiver’s window is kept in rcv wnd and this is advertised in outgoing
TCP segments. The field tmr is used as a timer for connections that should be removed after a
certain amount of time, such as connections in the TIME-WAIT state. The maximum segment
size allowed on the connection is stored in the mss field. The flags field contains additional state
information of the connection, such as whether the connection is in fast recovery or if a delayed
ACK should be sent.

struct tcp_pcb {
struct tcp_pcb *next;
enum tcp_state state; /* TCP state */
void (* accept)(void *arg, struct tcp_pcb *newpcb);
void *accept_arg;
struct ip_addr local_ip;
u16_t local_port;
struct ip_addr dest_ip;
u16_t dest_port;
u32_t rcv_nxt, rcv_wnd; /* receiver variables */
u16_t tmr;
u32_t mss; /* maximum segment size */
u8_t flags;
u16_t rttest; /* rtt estimation */
u32_t rtseq; /* sequence no for rtt estimation */
s32_t sa, sv; /* rtt average and variance */
u32_t rto; /* retransmission time-out */
u32_t lastack; /* last ACK received */
u8_t dupacks; /* number of duplicate ACKs */
u32_t cwnd, u32_t ssthresh; /* congestion control variables */
u32_t snd_ack, snd_nxt, /* sender variables */

snd_wnd, snd_wl1, snd_wl2, snd_lbb;
void (* recv)(void *arg, struct tcp_pcb *pcb, struct pbuf *p);
void *recv_arg;
struct tcp_seg *unsent, *unacked, /* queues */

*ooseq;
};

Figure 10. The tcp pcb structure

The fields rttest, rtseq, sa, and sv are used for the round-trip time estimation. The sequence
number of the segment that is used for estimating the round-trip time is stored in rtseq and the
time this segment was sent is stored in rttest. The average round-trip time and the round-trip
time variance is stored in sa and sv. These variables are used when calculating the retransmission
time-out which is stored in the rto field.

The two fields lastack and dupacks are used in the implementation of fast retransmit and
fast recovery. The lastack field contains the sequence number acknowledged by the last ACK
received and dupacks contains a count of how many ACKs that has been received for the sequence
number in lastack. The current congestion window for the connection is stored in the cwnd field
and the slow start threshold is kept in ssthresh.

The six fields snd ack, snd nxt, snd wnd, snd wl1, snd wl2 and snd lbb are used when sending
data. The highest sequence number acknowledged by the receiver is stored in snd ack and the
next sequence number to send is kept in snd nxt. The receiver’s advertised window is held in
snd wnd and the two fields snd wl1 and snd wl2 are used when updating snd wnd. The snd lbb
field contains the sequence number of the last byte queued for transmission.

11

10 TCP PROCESSING 10.3 Sequence number calculations

The function pointer recv and recv arg are used when passing received data to the application
layer. The three queues unsent, unacked and ooseq are used when sending and receiving data.
Data that has been received from the application but has not been sent is queued in unsent and
data that has been sent but not yet acknowledged by the remote host is held in unacked. Received
data that is out of sequence is buffered in ooseq.

struct tcp_seg {
struct tcp_seg *next;
u16_t len;
struct pbuf *p;
struct tcp_hdr *tcphdr;
void *data;
u16_t rtime;

};

Figure 11. The tcp seg structure

The tcp seg structure in Figure 11 is the internal representation of a TCP segment. This
structure starts with a next pointer which is used for linking when queuing segments. The len
field contains the length of the segment in TCP terms. This means that the len field for a data
segment will contain the length of the data in the segment, and the len field for an empty segment
with the SYN or FIN flags set will be 1. The pbuf p is the buffer containing the actual segment and
the tcphdr and data pointers points to the TCP header and the data in the segment, respectively.
For outgoing segments, the rtime field is used for the retransmission time-out of this segment.
Since incoming segments will not need to be retransmitted, this field is not needed and memory
for this field is not allocated for incoming segments.

10.3 Sequence number calculations

The TCP sequence numbers that are used to enumerate the bytes in the TCP byte stream are
unsigned 32 bit quantities, hence in the range [0, 232 − 1]. Since the number of bytes sent in a
TCP connection might be more than the number of 32-bit combinations, the sequence numbers
are calculated modulo 232. This means that ordinary comparison operators cannot be used with
TCP sequence numbers. The modified comparison operators, called <seq and >seq, are defined
by the relations

s <seq t ⇔ s − t < 0

and
s >seq t ⇔ s − t > 0,

where s and t are TCP sequence numbers. The comparison operators for ≤ and ≥ are defined
equivalently. The comparison operators are defined as C macros in the header file.

10.4 Queuing and transmitting data

Data that is to be sent is divided into appropriate sized chunks and given sequence numbers by the
tcp enqueue() function. Here, the data is packeted into pbufs and enclosed in a tcp seg structure.
The TCP header is build in the pbuf, and filled in with all fields except the acknowledgment
number, ackno, and the advertised window, wnd. These fields can change during the queuing
time of the segment and are therefore set by tcp output() which does the actual transmission of
the segment. After the segments are built, they are queued on the unsent list in the PCB. The
tcp enqueue() function tries to fill each segment with a maximum segment size worth of data and
when an under-full segment is found at the end of the unsent queue, this segment is appended
with the new data using the pbuf chaining functionality.

12

10 TCP PROCESSING 10.5 Receiving segments

After tcp enqueue() has formatted and queued the segments, tcp output() is called. It
checks if there is any room in the current window for any more data. The current window is
computed by taking the maximum of the congestion window and the advertised receiver’s window.
Next, it fills in the fields of the TCP header that was not filled in by tcp enqueue() and transmits
the segment using ip route() and ip output if(). After transmission the segment is put on the
unacked list, on which it stays until an ACK for the segment has been received.

When a segment is on the unacked list, it is also timed for retransmission as described in
Section 10.8. When a segment is retransmitted the TCP and IP headers of the original segment
is kept and only very little changes has to be made to the TCP header. The ackno and wnd fields
of the TCP header are set to the current values since we could have received data during the time
between the original transmission of the segment and the retransmission. This changes only two
16-bit words in the header and the whole TCP checksum does not have to be recomputed since
simple arithmetic [Rij94] can be used to update the checksum. The IP layer has already added
the IP header when the segment was originally transmitted and there is no reason to change it.
Thus a retransmission does not require any recomputation of the IP header checksum.

10.4.1 Silly window avoidance

The Silly Window Syndrome [Cla82b] (SWS) is a TCP phenomena that can lead to very bad
performance. SWS occurs when a TCP receiver advertises a small window and the TCP sender
immediately sends data to fill the window. When this small segment is acknowledged the window
is opened again by a small amount and sender will again send a small segment to fill the window.
This leads to a situation where the TCP stream consists of very small segments. In order to avoid
SWS both the sender and the receiver must try to avoid this situation. The receiver must not
advertise small window updates and the sender must not send small segments when only a small
window is offered.

In lwIP SWS is naturally avoided at the sender since TCP segments are constructed and
queued without knowledge of the advertised receiver’s window. In a large transfer the output
queue will consist of maximum sized segments. This means that if a TCP receiver advertises a
small window, the sender will not send the first segment on the queue since it is larger than the
advertised window. Instead, it will wait until the window is large enough for a maximum sized
segment.

When acting as a TCP receiver, lwIP will not advertise a receiver’s window that is smaller
than the maximum segment size of the connection.

10.5 Receiving segments

10.5.1 Demultiplexing

When TCP segments arrive at the tcp input() function, they are demultiplexed between the
TCP PCBs. The demultiplexing key is the source and destination IP addresses and the TCP
port numbers. There are two types of PCBs that must be distinguished when demultiplexing a
segment; those that correspond to open connections and those that correspond to connections that
are half open. Half open connections are those that are in the LISTEN state and only have the
local TCP port number specified and optionally the local IP address, whereas open connections
have the both IP addresses and both port numbers specified.

Many TCP implementations, such as the early BSD implementations, use a technique where
a linked list of PCBs with a single entry cache is used. The rationale behind this is that most
TCP connections constitute bulk transfers which typically show a large amount locality [Mog92],
resulting in a high cache hit ratio. Other caching schemes include keeping two one entry caches,
one for the PCB corresponding to the last packet that was sent and one for the PCB of the last
packet received [PP93]. An alternative scheme to exploit locality can be done by moving the most
recently used PCB to the front of the list. Both methods have been shown [MD92] to outperform
the one entry cache scheme.

13

10 TCP PROCESSING 10.6 Accepting new connections

In lwIP, whenever a PCB match is found when demultiplexing a segment, the PCB is moved
to the front of the list of PCBs. PCBs for connections in the LISTEN state are not moved to the
front however, since such connections are not expected to receive segments as often as connections
that are in a state in which they receive data.

10.5.2 Receiving data

The actual processing of incoming segments is made in the function tcp receive(). The ac-
knowledgment number of the segment is compared with the segments on the unacked queue of
the connection. If the acknowledgment number is higher than the sequence number of a segment
on the unacked queue, that segment is removed from the queue and the allocated memory for the
segment is deallocated.

An incoming segment is out of sequence if the sequence number of the segment is higher than
the rcv nxt variable in the PCB. Out of sequence segments are queued on the ooseq queue in
the PCB. If the sequence number of the incoming segment is equal to rcv nxt, the segment is
delivered to the upper layer by calling the recv function in the PCB and rcv nxt is increased by
the length of the incoming segment. Since the reception of an in-sequence segment might mean
that a previously received out of sequence segment now is the next segment expected, the ooseq
queued is checked. If it contains a segment with sequence number equal to rcv nxt, this segment
is delivered to the application by a call to to recv function and rcv nxt is updated. This process
continues until either the ooseq queue is empty or the next segment on ooseq is out of sequence.

10.6 Accepting new connections

TCP connections that are in the LISTEN state, i.e., that are passively open, are ready to accept
new connections from a remote host. For those connections a new TCP PCB is created and must
be passed to the application program that opened the initial listening TCP connection. In lwIP
this is done by letting the application register a callback function that is to be called when a new
connection has been established.

When a connection in the LISTEN state receives a TCP segment with the SYN flag set, a
new connection is created and a segment with the SYN and ACK flags are sent in response to
the SYN segment. The connection then enters the SYN-RCVD state and waits for an acknowl-
edgment for the sent SYN segment. When the acknowledgment arrives, the connection enters the
ESTABLISHED state, and the accept function (the accept field in the PCB structure in Figure
10) is called.

10.7 Fast retransmit

Fast retransmit and fast recovery is implemented in lwIP by keeping track of the last sequence
number acknowledged. If another acknowledgment for the same sequence number is received, the
dupacks counter in the TCP PCB is increased. When dupacks reaches three, the first segment
on the unacked queue is retransmitted and fast recovery is initialized. The implementation of fast
recovery follows the steps laid out in [APS99]. Whenever an ACK for new data is received, the
dupacks counter is reset to zero.

10.8 Timers

As in the the BSD TCP implementation, lwIP uses two periodical timers that goes off every 200
ms and 500 ms. Those two timers are then used to implement more complex logical timers such
as the retransmission timers, the TIME-WAIT timer and the delayed ACK timer.

The fine grained timer, tcp timer fine() goes through every TCP PCB checking if there are
any delayed ACKs that should be sent, as indicated by the flag field in the tcp pcb structure
(Figure 10). If the delayed ACK flag is set, an empty TCP acknowledgment segment is sent and
the flag is cleared.

14

11 INTERFACING THE STACK 10.9 Round-trip time estimation

The coarse grained timer, implemented in tcp timer coarse(), also scans the PCB list. For
every PCB, the list of unacknowledged segments (the unacked pointer in the tcp seg structure
in Figure 11), is traversed, and the rtime variable is increased. If rtime becomes larger than
the current retransmission time-out as given by the rto variable in the PCB, the segment is
retransmitted and the retransmission time-out is doubled. A segment is retransmitted only if
allowed by the values of the congestion window and the advertised receiver’s window. After
retransmission, the congestion window is set to one maximum segment size, the slow start threshold
is set to half of the effective window size, and slow start is initiated on the connection.

For connections that are in TIME-WAIT, the coarse grained timer also increases the tmr field
in the PCB structure. When this timer reaches the 2×MSL threshold, the connection is removed.

The coarse grained timer also increases a global TCP clock, tcp ticks. This clock is used for
round-trip time estimation and retransmission time-outs.

10.9 Round-trip time estimation

The round-trip time estimation is a critical part of TCP since the estimated round-trip time is used
when determining a suitable retransmission time-out. In lwIP round-trip times measurements are
taken in a fashion similar to the BSD implementations. Round-trip times are measured once per
round-trip and the smoothing function described in [Jac88] is used for the calculation of a suitable
retransmission time-out.

The TCP PCB variable rtseq hold the sequence number of the segment for which the round-
trip time is measured. The rttest variable in the PCB holds the value of tcp ticks when the
segment was first transmitted. When an ACK for a sequence number equal to or larger than
rtseq is received, the round-trip time is measured by subtracting rttest from tcp ticks. If a
retransmission occurred during the round-trip time measurement, no measurement is taken.

10.10 Congestion control

The implementation of congestion control is surprisingly simple and consists of a few lines of code
in the output and input code. When an ACK for new data is received the congestion window,
cwnd, is increased either by one maximum segment size or by mss2/cwnd, depending on whether
the connection is in slow start or congestion avoidance. When sending data the minimum value of
the receiver’s advertised window and the congestion window is used to determine how much data
that can be sent in each window.

11 Interfacing the stack

There are two ways for using the services provided by the TCP/IP stack; either by calling the
functions in the TCP and UDP modules directly, or to use the lwIP API presented in the next
section.

The TCP and UDP modules provide a rudimentary interface to the networking services. The
interface is based on callbacks and an application program that uses the interface can therefore
not operate in a sequential manner. This makes the application program harder to program and
the application code is harder to understand. In order to receive data the application program
registers a callback function with the stack. The callback function is associated with a particular
connection and when a packet arrives in the connection, the callback function is called by the
stack.

Furthermore, an application program that interfaces the TCP and UDP modules directly has
to (at least partially) reside in the same process as the TCP/IP stack. This is due to the fact
that a callback function cannot be called across a process boundary. This has both advantages
and disadvantages. One advantage is that since the application program and the TCP/IP stack
are in the same process, no context switching will be made when sending or receiving packets.
The main disadvantage is that the application program cannot involve itself in any long running

15

12 APPLICATION PROGRAM INTERFACE

computations since TCP/IP processing cannot occur in parallel with the computation, thus de-
grading communication performance. This can be overcome by splitting the application into two
parts, one part dealing with the communication and one part dealing with the computation. The
part doing the communication would then reside in the TCP/IP process and the computationally
heavy part would be a separate process. The lwIP API presented in the next section provides a
structured way to divide the application in such a way.

12 Application Program Interface

Due to the high level of abstraction provided by the BSD socket API, it is unsuitable for use in
a minimal TCP/IP implementation. In particular, BSD sockets require data that is to be sent to
be copied from the application program to internal buffers in the TCP/IP stack. The reason for
copying the data is that the application and the TCP/IP stack usually reside in different protection
domains. In most cases the application program is a user process and the TCP/IP stack resides
in the operating system kernel. By avoiding the extra copy, the performance of the API can be
greatly improved [ABM95]. Also, in order to make a copy, extra memory needs to be allocated
for the copy, effectively doubling the amount of memory used per packet.

The lwIP API was designed for lwIP and utilizes knowledge of the internal structure of lwIP
to achieve effectiveness. The lwIP API is very similar to the BSD API, but operates at a slightly
lower level. The API does not require that data is copied between the application program and
the TCP/IP stack, since the application program can manipulate the internal buffers directly.

Since the BSD socket API is well understood and many application programs have been written
for it, it is advantageous to have a BSD socket compatibility layer. Section 17 presents the BSD
socket functions rewritten using the lwIP API. A reference manual of the lwIP API is found in
Section 15.

12.1 Basic concepts

From the application’s point of view, data handling in the BSD socket API is done in continuous
memory regions. This is convenient for the application programmer since manipulation of data
in application programs is usually done in such continuous memory chunks. Using this type of
mechanism with lwIP would not be advantageous, since lwIP usually handles data in buffers
where the data is partitioned into smaller chunks of memory. Thus the data would have to be
copied into a continuous memory area before being passed to the application. This would waste
both processing time and memory since. Therefore, the lwIP API allows the application program
to manipulate data directly in the partitioned buffers in order to avoid the extra copy.

The lwIP API uses a connection abstraction similar to that of the BSD socket API. There are
very noticeable differences however; where an application program using the BSD socket API need
not be aware of the distinction between an ordinary file and a network connection, an application
program using the lwIP API has to be aware of the fact that it is using a network connection.

Network data is received in the form of buffers where the data is partitioned into smaller chunks
of memory. Since many applications wants to manipulate data in a continuous memory region, a
convenience function for copying the data from a fragmented buffer to continuous memory exists.

Sending data is done differently depending on whether the data should be sent over a TCP
connection or as UDP datagrams. For TCP, data is sent by passing the output function a pointer
to a continuous memory region. The TCP/IP stack will partition the data into appropriately
sized packets and queue them for transmission. When sending UDP datagrams, the application
program will to explicitly allocate a buffer and fill it with data. The TCP/IP stack will send the
datagram immediately when the output function is called.

16

13 STATISTICAL CODE ANALYSIS 12.2 Implementation of the API

12.2 Implementation of the API

The implementation of the API is divided into two parts, due to the process model of the TCP/IP
stack. As shown in Figure 12, parts of the API is implemented as a library linked to the application
program, and parts are implemented in the TCP/IP process. The two parts communicate using
the interprocess communication (IPC) mechanisms provided by the operating system emulation
layer. The current implementation uses the following three IPC mechanisms:

• shared memory,

• message passing, and

• semaphores.

While these IPC types are supported by the operating system layer, they need not be directly
supported by the underlying operating system. For operating systems that do not natively support
them, the operating system emulation layer emulates them.

Application process TCP/IP process

API API

IPC

Figure 12. Division of the API implementation

The general design principle used is to let as much work as possible be done within the ap-
plication process rather than in the TCP/IP process. This is important since all processes use
the TCP/IP process for their TCP/IP communication. Keeping down the code footprint of the
part of the API that is linked with the applications is not as important. This code can be shared
among the processes, and even if shared libraries are not supported by the operating system, the
code is stored in ROM. Embedded systems usually carry fairly large amounts of ROM, whereas
processing power is scarce.

The buffer management is located in the library part of the API implementation. Buffers are
created, copied and deallocated in the application process. Shared memory is used to pass the
buffers between the application process and the TCP/IP process. The buffer data type used in
communication with the application program is an abstraction of the pbuf data type.

Buffers carrying referenced memory, as opposed to allocated memory, is also passed using
shared memory. For this to work, is has to be possible to share the referenced memory between
the processes. The operating systems used in embedded systems for which lwIP is intended
usually do not implement any form of memory protection, so this will not be a problem.

The functions that handle network connections are implemented in the part of the API im-
plementation that resides in the TCP/IP process. The API functions in the part of the API that
runs in the application process will pass a message using a simple communication protocol to the
API implementation in the TCP/IP process. The message includes the type of operation that
should be carried out and any arguments for the operation. The operation is carried out by the
API implementation in the TCP/IP process and the return value is sent to the application process
by message passing.

13 Statistical code analysis

This section analyzes the code of lwIP with respect to compiled object code size and number of
lines in the source code. The code has been compiled for two processor architectures:

17

13 STATISTICAL CODE ANALYSIS 13.1 Lines of code

• The Intel Pentium III processor, henceforth referred to as the Intel x86 processor. The code
was compiled with gcc 2.95.2 under FreeBSD 4.1 with compiler optimizations turned on.

• The 6502 processor [Nab, Zak83]. The code was compiled with cc65 2.5.5 [vB] with compiler
optimizations turned on.

The Intel x86 has seven 32-bit registers and uses 32-bit pointers. The 6502, which main use
today is in embedded systems, has one 8-bit accumulator as well as two 8-bit index registers and
uses 16-bit pointers.

13.1 Lines of code

Table 1. Lines of code.
Module Lines of code Relative size
TCP 1076 42%
Support functions 554 21%
API 523 20%
IP 189 7%
UDP 149 6%
ICMP 87 3%
Total 2578 100%

ICMP
UDP

IP

API

Support functions

TCP

Figure 13. Lines of code.

Table 1 summarizes the number lines of source code of lwIP and Figure 13 shows the relative
number of lines of code. The category “Support functions” include buffer and memory manage-
ment functions as well as the functions for computing the Internet checksum. The checksumming
functions are generic C implementations of the algorithm that should be replaced with processor
specific implementations when actually deployed. The category “API” includes both the part of
the API that is linked with the applications and the part that is linked with the TCP/IP stack.
The operating system emulation layer is not included in this analysis since its size varies heavily
with the underlying operating system and is therefore not interesting to compare.

For the purpose of this comparison all comments and blank lines have been removed from the
source files. Also, no header files were included in the comparison. We see that TCP is vastly
larger than the other protocol implementations and that the API and the support functions taken
together are as large as TCP.

18

13 STATISTICAL CODE ANALYSIS 13.2 Object code size

13.2 Object code size

Table 2. lwIP object code size when compiled for the Intel x86.
Module Size (bytes) Relative size
TCP 6584 48%
API 2556 18%
Support functions 2281 16%
IP 1173 8%
UDP 731 5%
ICMP 505 4%
Total 13830 100%

ICMP
UDP

IP

Support functions

API

TCP

Figure 14. lwIP object code size when compiled for the x86.

Table 2 summarizes the sizes of the compiled object code when compiled for the Intel x86 and
Figure 14 shows the relative sizes. We see that the order of the items are somewhat different from
Table 1. Here, the API is larger than the support functions category, even though the support
functions has more lines of code. We also see that TCP constitutes 48% of the compiled code but
only 42% of the total lines of code. Inspection of the assembler output from the TCP module
shows a probable cause for this. The TCP module involve large amounts of pointer dereferencing,
which expands into many lines of assembler code, thus increasing the object code size. Since many
pointers are dereferenced two or three times in each function, this could be optimized by modifying
the source code so that pointers are dereferenced only once and placed in a local variable. While
this would reduce the size of the compiled code, it would also use more RAM as space for the local
variables is allocated on the stack.

Table 3. lwIP object code size when compiled for the 6502.
Module Size (bytes) Relative size
TCP 11461 51%
Support functions 4149 18%
API 3847 17%
IP 1264 6%
UDP 1211 5%
ICMP 714 3%
Total 22646 100%

19

14 PERFORMANCE ANALYSIS

ICMP
UDP

IP

API

Support functions

TCP

Figure 15. lwIP object code size when compiled for the 6502.

Table 3 shows the sizes of the object code when compiled for the 6502 and in Figure 14 the
relative sizes are shown. We see that the TCP, the API, and the support functions are nearly
twice as large as when compiled for the Intel x86, whereas IP, UDP and ICMP are approximately
the same size. We also see that the support functions category is larger than the API, contrary
to Table 2. The difference in size between the API and the support functions category is small
though.

The reason for the increase in size of the TCP module is that the 6502 does not natively
support 32-bit integers. Therefore, each 32-bit operation is expanded by the compiler into many
lines of assembler code. TCP sequence numbers are 32-bit integers and the TCP module performs
numerous sequence number computations.

The size of the TCP code can be compared to the size of TCP in other TCP/IP stacks, such
as the popular BSD TCP/IP stack for FreeBSD 4.1 and the independently derived TCP/IP stack
for Linux 2.2.10. Both are compiled for the Intel x86 with gcc and compiler optimizations turned
on. The size of the TCP implementation in lwIP is almost 6600 bytes. The object code size
of the TCP implementation in FreeBSD 4.1 is roughly 27000 bytes, which is four times as large
as in lwIP. In Linux 2.2.10, the object code size of the TCP implementation is even larger and
consists of 39000 bytes, roughly six times as much as in lwIP. The large difference in code size
between lwIP and the two other implementations arise from the fact that both the FreeBSD and
the Linux implementations contain more TCP features such as SACK [MMFR96] as well as parts
of the implementation of the BSD socket API.

The reason for not comparing the sizes of the implementation of IP is that there is vastly
more features in the IP implementations of FreeBSD and Linux. For instance, both FreeBSD
and Linux includes support for firewalling and tunneling in their IP implementations. Also, those
implementations support dynamic routing tables, which is not implemented in lwIP.

The lwIP API constitutes roughly one sixth of the size of lwIP. Since lwIP can be used
without inclusion of the API, this part can be left out when deploying lwIP in a system with very
little code memory.

14 Performance analysis

The performance of lwIP in terms of RAM usage or code efficiency have not been formally tested
in this thesis, and this has been noted in future work. Simple tests have been conducted, however,
and these have shown that lwIP running a simple HTTP/1.0 server is able to serve at least 10
simultaneous requests for web pages while consuming less than 4 kilobytes of RAM. In those tests,
only the memory used by the protocols, buffering system, and the application program has been
taken into account. Thus memory used by a device driver would add to the above figure.

20

15 API REFERENCE

15 API reference

15.1 Data types

There are two data types that are used for the lwIP API. These are

• netbuf, the network buffer abstraction, and

• netconn, the abstraction of a network connection.

Each data type is repressented as a pointer to a C struct. Knowledge of the internal structure of
the struct should not be used in application programs. Instead, the API provides functions for
modifying and extracting necessary fields.

15.1.1 Netbufs

Netbufs are buffers that are used for sending and receiving data. Internally, a netbuf is associated
with a pbuf as presented in Section 6.1. Netbufs can, just as pbufs, accomodate both allocated
memory and referenced memory. Allocated memory is RAM that is explicitly allocated for holding
network data, whereas referenced memory might be either application managed RAM or external
ROM. Referenced memory is useful for sending data that is not modified, such as static web pages
or images.

The data in a netbuf can be fragmented into differenly sized blocks. This means that an
application must be prepared to accept fragmented data. Internally, a netbuf has a pointer to one
of the fragments in the netbuf. Two functions, netbuf_next() and netbuf_first() are used to
manipulate this pointer.

Netbufs that have been received from the network also contain the IP address and port number
of the originator of the packet. Functions for extracting those values exist.

15.2 Buffer functions

15.2.1 netbuf new()

Synopsis
struct netbuf * netbuf new(void)

Description
Allocates a netbuf structure. No buffer space is allocated when doing this, only the top level
structure. After use, the netbuf must be deallocated with netbuf_delete().

15.2.2 netbuf delete()

Synopsis
void netbuf delete(struct netbuf *)

Description
Deallocates a netbuf structure previosly allocated by a call to the netbuf_new() function. Any
buffer memory allocated to the netbuf by calls to netbuf_alloc() is also deallocated.

Example This example shows the basic mechanisms for using netbufs.

int
main()
{
struct netbuf *buf;

21

15 API REFERENCE 15.2 Buffer functions

buf = netbuf_new(); /* create a new netbuf */
netbuf_alloc(buf, 100); /* allocate 100 bytes of buffer */

/* do something with the netbuf */
/* [...] */

netbuf_delete(buf); /* deallocate netbuf */
}

15.2.3 netbuf alloc()

Synopsis
void * netbuf alloc(struct netbuf *buf, int size)

Description
Allocates buffer memory with size number of bytes for the netbuf buf. The function returns a
pointer to the allocated memory. Any memory previously allocated to the netbuf buf is deallo-
cated. The allocated memory can later be deallocated with the netbuf_free() function. Since
protocol headers are expected to precede the data when it should be sent, the function allocates
memory for protocol headers as well as for the actual data.

15.2.4 netbuf free()

Synopsis
int netbuf free(struct netbuf *buf)

Description
Deallocates the buffer memory associated with the netbuf buf. If no buffer memory has been
allocated for the netbuf, this function does nothing.

15.2.5 netbuf ref()

Synopsis
int netbuf ref(struct netbuf *buf, void *data, int size)

Description
Associates the external memory pointer to by the data pointer with the netbuf buf. The size of the
external memory is given by size. Any memory previously allocated to the netbuf is deallocated.
The difference between allocating memory for the netbuf with netbuf_alloc() and allocating
memory using, e.g., malloc() and referencing it with netbuf_ref() is that in the former case,
space for protocol headers is allocated as well which makes processing and sending the buffer
faster.

Example This example shows a simple use of the netbuf_ref() function.

int
main()
{
struct netbuf *buf;
char string[] = "A string";

/* create a new netbuf */
buf = netbuf_new();

22

15 API REFERENCE 15.2 Buffer functions

/* refernce the string */
netbuf_ref(buf, string, sizeof(string));

/* do something with the netbuf */
/* [...] */

/* deallocate netbuf */
netbuf_delete(buf);

}

15.2.6 netbuf len()

Synopsis
int netbuf len(struct netbuf *buf)

Description
Returns the total length of the data in the netbuf buf, even if the netbuf is fragmented. For a
fragmented netbuf, the value obtained by calling this function is not the same as the size of the
first fragment in the netbuf.

15.2.7 netbuf data()

Synopsis
int netbuf data(struct netbuf *buf, void **data, int *len)

Description
This function is used to obtain a pointer to and the length of a block of data in the netbuf buf.
The arguments data and len are result parameters that will be filled with a pointer to the data
and the length of the data pointed to. If the netbuf is fragmented, this function gives a pointer
to one of the fragments in the netbuf. The application program must use the fragment handling
functions netbuf_first() and netbuf_next() in order to reach all data in the netbuf.

See the example under netbuf_next() for an example of how use netbuf_data().

15.2.8 netbuf next()

Synopsis
int netbuf next(struct netbuf *buf)

Description
This function updates the internal fragment pointer in the netbuf buf so that it points to the next
fragment in the netbuf. The return value is zero if there are more fragments in the netbuf, > 0
if the fragment pointer now points to the last fragment in the netbuf, and < 0 if the fragment
pointer already pointed to the last fragment.

Example This example shows how to use the netbuf_next() function. We assume that this is
in the middle of a function and that the variable buf is a netbuf.

/* [...] */
do {

char *data;
int len;

23

15 API REFERENCE 15.2 Buffer functions

/* obtain a pointer to the data in the fragment */
netbuf_data(buf, &data, &len);

/* do something with the data */
do_something(data, len);

} while(netbuf_next(buf) >= 0);
/* [...] */

15.2.9 netbuf first()

Synopsis
void netbuf first(struct netbuf *buf)

Description
Resets the fragment pointer in the netbuf buf so that it points to the first fragment.

15.2.10 netbuf copy()

Synopsis
void netbuf copy(struct netbuf *buf, void *data, int len)

Description
Copies all of the data from the netbuf buf into the memory pointed to by data even if the netbuf
buf is fragmented. The len parameter is an upper bound of how much data that will be copied
into the memory pointed to by data.

Example This example shows a simple use of netbuf_copy(). Here, 200 bytes of memory is
allocated on the stack to hold data. Even if the netbuf buf has more data that 200 bytes, only
200 bytes are copied into data.

void
example_function(struct netbuf *buf)
{

char data[200];
netbuf_copy(buf, data, 200);

/* do something with the data */
}

15.2.11 netbuf chain()

Synopsis
void netbuf chain(struct netbuf *head, struct netbuf *tail)

Description
Chains the two netbufs head and tail together so that the data in tail will become the last
fragment(s) in head. The netbuf tail is deallocated and should not be used after the call to this
function.

15.2.12 netbuf fromaddr()

Synopsis
struct ip addr * netbuf fromaddr(struct netbuf *buf)

24

16 NETWORK CONNECTION FUNCTIONS

Description
Returns the IP address of the host the netbuf buf was received from. If the netbuf has not
been received from the network, the return the value of this function is undefined. The function
netbuf_fromport() can be used to obtain the port number of the remote host.

15.2.13 netbuf fromport()

Synopsis
unsigned short netbuf fromport(struct netbuf *buf)

Description
Returns the port number of the host the netbuf buf was received from. If the netbuf has not
been received from the network, the return the value of this function is undefined. The function
netbuf_fromaddr() can be used to obtain the IP address of the remote host.

16 Network connection functions

16.0.14 netconn new()

Synopsis
struct netconn * netconn new(enum netconn type type)

Description
Creates a new connection abstraction structure. The argument can be one of NETCONN_TCP or
NETCONN_UDP, yielding either a TCP or a UDP connection. No connection is established by the
call to this function and no data is sent over the network.

16.0.15 netconn delete()

Synopsis
void netconn delete(struct netconn *conn)

Description
Deallocates the netconn conn. If the connection is open, it is closed as a result of this call.

16.0.16 netconn type()

Synopsis
enum netconn type netconn type(struct netconn *conn)

Description
Returns the type of the connection conn. This is the same type that is given as an argument to
netconn_new() and can be either NETCONN_TCP or NETCONN_UDP.

16.0.17 netconn peer()

Synopsis
int netconn peer(struct netconn *conn,
struct ip addr **addr, unsigned short port)

25

16 NETWORK CONNECTION FUNCTIONS

Description
The function netconn_peer() is used to obtain the IP address and port of the remote end of a
connection. The parameters addr and port are result parameters that are set by the function. If
the connection conn is not connected to any remote host, the results are undefined.

16.0.18 netconn addr()

Synopsis
int netconn addr(struct netconn *conn,
struct ip addr **addr, unsigned short port)

Description
This function is used to obtain the local IP address and port number of the connection conn.

16.0.19 netconn bind()

Synopsis
int netconn bind(struct netconn *conn,
struct ip addr *addr, unsigned short port)

Description
Binds the connection conn to the local IP address addr and TCP or UDP port port. If addr is
NULL the local IP address is determined by the networking system.

16.0.20 netconn connect()

Synopsis
int netconn connect(struct netconn *conn,
struct ip addr *remote addr, unsigned short remote port)

Description
In case of UDP, sets the remote receiver as given by remote_addr and remote_port of UDP
messages sent over the connection. For TCP, netconn_connect() opens a connection with the
remote host.

16.0.21 netconn listen()

Synopsis
int netconn listen(struct netconn *conn)

Description
Puts the TCP connection conn into the TCP LISTEN state.

16.0.22 netconn accept()

Synopsis
struct netconn * netconn accept(struct netconn *conn)

Description
Blocks the process until a connection request from a remote host arrives on the TCP connection
conn. The connection must be in the LISTEN state so netconn_listen() must be called prior
to netconn_accept(). When a connection is established with the remote host, a new connection
structure is returned.

26

16 NETWORK CONNECTION FUNCTIONS

Example This example shows how to open a TCP server on port 2000.

int
main()
{

struct netconn *conn, *newconn;

/* create a connection structure */
conn = netconn_new(NETCONN_TCP);

/* bind the connection to port 2000 on any local
IP address */

netconn_bind(conn, NULL, 2000);

/* tell the connection to listen for incoming
connection requests */

netconn_listen(conn);

/* block until we get an incoming connection */
newconn = netconn_accept(conn);

/* do something with the connection */
process_connection(newconn);

/* deallocate both connections */
netconn_delete(newconn);
netconn_delete(conn);

}

16.0.23 netconn recv()

Synopsis
struct netbuf * netconn recv(struct netconn *conn)

Description
Blocks the process while waiting for data to arrive on the connection conn. If the connection has
been closed by the remote host, NULL is returned, otherwise a netbuf containing the recevied data
is returned.

Example This is a small example that shows a suggested use of the netconn_recv() function.
We assume that a connection has been established before the call to example_function().

void
example_function(struct netconn *conn)
{

struct netbuf *buf;

/* receive data until the other host closes
the connection */

while((buf = netconn_recv(conn)) != NULL) {
do_something(buf);

}

27

16 NETWORK CONNECTION FUNCTIONS

/* the connection has now been closed by the
other end, so we close our end */

netconn_close(conn);
}

16.0.24 netconn write()

Synopsis
int netconn write(struct netconn *conn, void *data,
int len, unsigned int flags)

Description
This function is only used for TCP connections. It puts the data pointed to by data on the output
queue for the TCP connection conn. The length of the data is given by len. There is no restriction
on the length of the data. This function does not require the application to explicitly allocate
buffers, as this is taken care of by the stack. The flags parameter has two possible states, as
shown below.

#define NETCONN_NOCOPY 0x00
#define NETCONN_COPY 0x01

When passed the flag NETCONN_COPY the data is copied into internal buffers which is allocated
for the data. This allows the data to be modified directly after the call, but is inefficient both in
terms of execution time and memory usage. If the flag NETCONN_NOCOPY is used, the data is not
copied but rather referenced. The data must not be modified after the call, since the data can be
put on the retransmission queue for the connection, and stay there for an indeterminate amount
of time. This is useful when sending data that is located in ROM and therefore is immutable.

If greater control over the modifiability of the data is needed, a combination of copied and
non-copied data can be used, as seen in the example below.

Example This example shows the basic usage of netconn_write(). Here, the variable data is
assumed to be modified later in the program, and is therefore copied into the internal buffers by
passing the flag NETCONN_COPY to netconn_write(). The text variable contains a string that will
not be modified and can therefore be sent using references instead of copying.

int
main()
{
struct netconn *conn;
char data[10];
char text[] = "Static text";
int i;

/* set up the connection conn */
/* [...] */

/* create some arbitrary data */
for(i = 0; i < 10; i++)

data[i] = i;

netconn_write(conn, data, 10, NETCONN_COPY);
netconn_write(conn, text, sizeof(text), NETCONN_NOCOPY);

28

16 NETWORK CONNECTION FUNCTIONS

/* the data can be modified */
for(i = 0; i < 10; i++)

data[i] = 10 - i;

/* take down the connection conn */
netconn_close(conn);

}

16.0.25 netconn send()

Synopsis
int netconn send(struct netconn *conn, struct netbuf *buf)

Description
Send the data in the netbuf buf on the UDP connection conn. The data in the netbuf should not
be too large since IP fragmentation is not used. The data should not be larger than the maximum
transmission unit (MTU) of the outgoing network interface. Since there currently is no way of
obtaining this value a careful approach sould be taken, and the netbuf should not contain data
that is larger than some 1000 bytes.

No checking is made whether the data is sufficiently small and sending very large netbufs might
give undefined results.

Example This example shows how to send some UDP data to UDP port 7000 on a remote host
with IP address 10.0.0.1.

int
main()
{
struct netconn *conn;
struct netbuf *buf;
struct ip_addr addr;
char *data;
char text[] = "A static text";
int i;

/* create a new connection */
conn = netconn_new(NETCONN_UDP);

/* set up the IP address of the remote host */
addr.addr = htonl(0x0a000001);

/* connect the connection to the remote host */
netconn_connect(conn, &addr, 7000);

/* create a new netbuf */
buf = netbuf_new();
data = netbuf_alloc(buf, 10);

/* create some arbitrary data */
for(i = 0; i < 10; i++)

data[i] = i;

/* send the arbitrary data */

29

17 BSD SOCKET LIBRARY

netconn_send(conn, buf);

/* reference the text into the netbuf */
netbuf_ref(buf, text, sizeof(text));

/* send the text */
netconn_send(conn, buf);

/* deallocate connection and netbuf */
netconn_delete(conn);
netconn_delete(buf);

}

16.0.26 netconn close()

Synopsis
int netconn close(struct netconn *conn)

Description
Closes the connection conn.

17 BSD socket library

This section provides a simple implementation of the BSD socket API using the lwIP API. The
implementation is provided as a reference only, and is not intended for use in actual programs.
There is for example no error handling.

Also, this implementation does not support the select() and poll() functions of the BSD
socket API since the lwIP API does not have any functions that can be used to implement those.
In order to implement those functions, the BSD socket implementation would have to communicate
directly with the lwIP stack and not use the API.

17.1 The representation of a socket

In the BSD socket API sockets are represented as ordinary file descriptors. File descriptors are
integers that uniquely identifies the file or network connection. In this implementation of the BSD
socket API, sockets are internally represented by a netconn structure. Since BSD sockets are
identified by an integer, the netconn variables are kept in an array, sockets[], where the BSD
socket identifier is the index into the array.

17.2 Allocating a socket

17.2.1 The socket() call

The socket() call allocates a BSD socket. The parameters to socket() are used to specify what
type of socket that is requested. Since this socket API implementation is concerned only with
network sockets, these are the only socket type that is supported. Also, only UDP (SOCK DGRAM)
or TCP (SOCK STREAM) sockets can be used.

int
socket(int domain, int type, int protocol)
{
struct netconn *conn;
int i;

30

17 BSD SOCKET LIBRARY 17.3 Connection setup

/* create a netconn */
switch(type) {
case SOCK_DGRAM:

conn = netconn_new(NETCONN_UDP);
break;

case SOCK_STREAM:
conn = netconn_new(NETCONN_TCP);
break;

}

/* find an empty place in the sockets[] list */
for(i = 0; i < sizeof(sockets); i++) {

if(sockets[i] == NULL) {
sockets[i] = conn;
return i;

}
}
return -1;

}

17.3 Connection setup

The BSD socket API calls for setting up a connection are very similar to the connection setup
functions of the minimal API. The implementation of these calls mainly include translation from
the integer representation of a socket to the connection abstraction used in the minimal API.

17.3.1 The bind() call

The bind() call binds the BSD socket to a local address. In the call to bind() the local IP address
and port number are specified. The bind() function is very similar to the netconn bind() function
in the lwIP API.

int
bind(int s, struct sockaddr *name, int namelen)
{
struct netconn *conn;
struct ip_addr *remote_addr;
unsigned short remote_port;

remote_addr = (struct ip_addr *)name->sin_addr;
remote_port = name->sin_port;

conn = sockets[s];
netconn_bind(conn, remote_addr, remote_port);

return 0;
}

17.3.2 The connect() call

The implementation of connect() is as straightforward as that of bind().

31

17 BSD SOCKET LIBRARY 17.3 Connection setup

int
connect(int s, struct sockaddr *name, int namelen)
{
struct netconn *conn;
struct ip_addr *remote_addr;
unsigned short remote_port;

remote_addr = (struct ip_addr *)name->sin_addr;
remote_port = name->sin_port;

conn = sockets[s];
netconn_connect(conn, remote_addr, remote_port);

return 0;
}

17.3.3 The listen() call

The listen() call is the equivalent of the lwIP API function netconn listen() and can only be
used for TCP connections. The only difference is that the BSD socket API allows the application
to specify the size of the queue of pending connections (the backlog). This is not possible with
lwIP and the backlog parameter is ignored.

int
listen(int s, int backlog)
{
netconn_listen(sockets[s]);
return 0;

}

17.3.4 The accept() call

The accept() call is used to wait for incoming connections on a TCP socket that previously has
been set into LISTEN state by a call to listen(). The call to accept() blocks until a connection
has been established with a remote host. The arguments to listen are result parameters that are
set by the call to accept(). These are filled with the address of the remote host.

When the new connection has been established, the lwIP function netconn accept() will
return the connection handle for the new connection. After the IP address and port number of
the remote host has been filled in, a new socket identifier is allocated and returned.

int
accept(int s, struct sockaddr *addr, int *addrlen)
{
struct netconn *conn, *newconn;
struct ip_addr *addr;
unsigned short port;
int i;

conn = sockets[s];

newconn = netconn_accept(conn);

/* get the IP address and port of the remote host */

32

17 BSD SOCKET LIBRARY 17.4 Sending and receiving data

netconn_peer(conn, &addr, &port);

addr->sin_addr = *addr;
addr->sin_port = port;

/* allocate a new socket identifier */
for(i = 0; i < sizeof(sockets); i++) {

if(sockets[i] == NULL) {
sockets[i] = newconn;
return i;

}
}

return -1;
}

17.4 Sending and receiving data

17.4.1 The send() call

In the BSD socket API, the send() call is used in both UDP and TCP connection for sending
data. Before a call to send() the receiver of the data must have been set up using connect().
For UDP sessions, the send() call resembles the netconn send() function from the lwIP API,
but since the lwIP API require the application to explicitly allocate buffers, a buffer must be
allocated and deallocated within the send() call. Therefore, a buffer is allocated and the data is
copied into the allocated buffer.

The netconn send() function of the lwIP API cannot be used with TCP connections, so this
implementation of the send() uses netconn write() for TCP connections. In the BSD socket
API, the application is allowed to modify the sent data directly after the call to send() and
therefore the NETCONN COPY flag is passed to netconn write() so that the data is copied into
internal buffers in the stack.

int
send(int s, void *data, int size, unsigned int flags)
{
struct netconn *conn;
struct netbuf *buf;

conn = sockets[s];

switch(netconn_type(conn)) {
case NETCONN_UDP:

/* create a buffer */
buf = netbuf_new();

/* make the buffer point to the data that should
be sent */

netbuf_ref(buf, data, size);

/* send the data */
netconn_send(sock->conn.udp, buf);

/* deallocated the buffer */
netbuf_delete(buf);

33

17 BSD SOCKET LIBRARY 17.4 Sending and receiving data

break;
case NETCONN_TCP:

netconn_write(conn, data, size, NETCONN_COPY);
break;

}
return size;

}

17.4.2 The sendto() and sendmsg() calls

The sendto() and sendmsg() calls are similar to the send() call, but they allow the application
program to specify the receiver of the data in the parameters to the call. Also, sendto() and
sendmsg() only can be used for UDP connections. The implementation uses netconn connect()
to set the receiver of the datagram and must therefore reset the remote IP address and port
number if the socket was previously connected. An implementation of sendmsg() is not included.

int
sendto(int s, void *data, int size, unsigned int flags,

struct sockaddr *to, int tolen)
{
struct netconn *conn;
struct ip_addr *remote_addr, *addr;
unsigned short remote_port, port;
int ret;

conn = sockets[s];

/* get the peer if currently connected */
netconn_peer(conn, &addr, &port);

remote_addr = (struct ip_addr *)to->sin_addr;
remote_port = to->sin_port;
netconn_connect(conn, remote_addr, remote_port);

ret = send(s, data, size, flags);

/* reset the remote address and port number
of the connection */

netconn_connect(conn, addr, port);
}

17.4.3 The write() call

In the BSD socket API, the write() call sends data on a connection and can be used for both
UDP and TCP connections. For TCP connections, this maps directly to the lwIP API function
netconn write(). For UDP, the BSD socket function write() function is equvalent to the send()
function.

int
write(int s, void *data, int size)
{
struct netconn *conn;

34

17 BSD SOCKET LIBRARY 17.4 Sending and receiving data

conn = sockets[s];

switch(netconn_type(conn)) {
case NETCONN_UDP:

send(s, data, size, 0);
break;

case NETCONN_TCP:
netconn_write(conn, data, size, NETCONN_COPY);
break;

}
return size;

}

17.4.4 The recv() and read() calls

In the BSD socket API, the recv() and read() calls are used on a connected socket to receive
data. They can be used for both TCP and UDP connections. A number of flags can be passed by
the call to recv(). None of these are implemented here, and the flags parameter is ignored.

If the received message is larger than the supplied memory area, the excess data is silently
discarded.

int
recv(int s, void *mem, int len, unsigned int flags)
{
struct netconn *conn;
struct netbuf *buf;
int buflen;

conn = sockets[s];
buf = netconn_recv(conn);
buflen = netbuf_len(buf);

/* copy the contents of the received buffer into
the supplied memory pointer mem */

netbuf_copy(buf, mem, len);
netbuf_delete(buf);

/* if the length of the received data is larger than
len, this data is discarded and we return len.
otherwise we return the actual length of the received
data */

if(len > buflen) {
return buflen;

} else {
return len;

}
}

int
read(int s, void *mem, int len)
{
return recv(s, mem, len, 0);

}

35

18 CODE EXAMPLES

17.4.5 The recvfrom() and recvmsg() calls

The recvfrom() and recvmsg() calls are similar to the recv() call but differ in that the IP
address and port number of the sender of the data can be obtained through the call.

An implementation of recvmsg() is not included.

int
recvfrom(int s, void *mem, int len, unsigned int flags,
struct sockaddr *from, int *fromlen)
{
struct netconn *conn;
struct netbuf *buf;
struct ip_addr *addr;
unsigned short port;
int buflen;

conn = sockets[s];
buf = netconn_recv(conn);
buflen = netbuf_len(conn);

/* copy the contents of the received buffer into
the supplied memory pointer */

netbuf_copy(buf, mem, len);

addr = netbuf_fromaddr(buf);
port = netbuf_fromport(buf);
from->sin_addr = *addr;
from->sin_port = port;
*fromlen = sizeof(struct sockaddr);
netbuf_delete(buf);

/* if the length of the received data is larger than
len, this data is discarded and we return len.
otherwise we return the actual length of the received
data */

if(len > buflen) {
return buflen;

} else {
return len;

}
}

18 Code examples

18.1 Using the API

This section presents a simple web server written using the lwIP API. The application code is
given below. The application implements only the bare bones of an HTTP/1.0 [BLFF96] server
and is included only to show the principles in using the lwIP API for an actual application.

The application consists of a single process that accepts connections from the network, responds
to HTTP requests, and closes the connection. There are two functions in the application; main()

36

18 CODE EXAMPLES 18.1 Using the API

which does the necessary initialization and connection setup, and process connection() that
implements the small subset of HTTP/1.0. The connection setup procedure a is fairly straight-
forward example of how connections are initialized using the minimal API. After the connection
has been created using netconn new() the connection is bound to TCP port 80 and put into the
LISTEN state, in which it waits for connections. The call to netconn accept() will return a
netconn connection once a remote host has connected. After the connection has been processed
by process connection() the netconn must be deallocated using netconn delete().

In process connection() a netbuf is received through a call to netconn recv() and a pointer
to the actual request data is obtained via netbuf data(). This will return the pointer to the data
in the first fragment of the netbuf, and we hope that it will contain the request. Since we only
read the first seven bytes of the request, this is not an unreasonable assumption. If we would have
wanted to read more data, the simplest way would have been to use netbuf copy() and copy the
request into a continuous memory and process it from there.

This simple web server only responds to HTTP GET requests for the file “/”, and when the
request has been checked the response it sent. We send the HTTP header for HTML data as well
as the HTML data with two calls to the functions netconn write(). Since we do not modify either
the HTTP header or the HTML data, we can use the NETCONN NOCOPY flag with netconn write()
thus avoiding any copying.

Finally, the connection is closed and the function process connection() returns. The con-
nection structure is deallocated after the call.

The C code for the application follows.

/* A simple HTTP/1.0 server using the minimal API. */

#include "api.h"

/* This is the data for the actual web page.
Most compilers would place this in ROM. */

const static char indexdata[] =
"<html> \
<head><title>A test page</title></head> \
<body> \
This is a small test page. \
</body> \
</html>";

const static char http_html_hdr[] =
"Content-type: text/html\r\n\r\n";

/* This function processes an incomming connection. */
static void
process_connection(struct netconn *conn)
{
struct netbuf *inbuf;
char *rq;
int len;

/* Read data from the connection into the netbuf inbuf.
We assume that the full request is in the netbuf. */

inbuf = netconn_recv(conn);

/* Get the pointer to the data in the first netbuf
fragment which we hope contains the request. */

37

18 CODE EXAMPLES 18.1 Using the API

netbuf_data(inbuf, &rq, &len);

/* Check if the request was an HTTP "GET /\r\n". */
if(rq[0] == ’G’ && rq[1] == ’E’ &&

rq[2] == ’T’ && rq[3] == ’ ’ &&
rq[4] == ’/’ && rq[5] == ’\r’ &&
rq[6] == ’\n’) {

/* Send the header. */
netconn_write(conn, http_html_hdr, sizeof(http_html_hdr),

NETCONN_NOCOPY);

/* Send the actual web page. */
netconn_write(conn, indexdata, sizeof(indexdata),

NETCONN_NOCOPY);

/* Close the connection. */
netconn_close(conn);

}
}

}

/* The main() function. */
int
main()
{
struct netconn *conn, *newconn;

/* Create a new TCP connection handle. */
conn = netconn_new(NETCONN_TCP);

/* Bind the connection to port 80 on any
local IP address. */

netconn_bind(conn, NULL, 80);

/* Put the connection into LISTEN state. */
netconn_listen(conn);

/* Loop forever. */
while(1) {

/* Accept a new connection. */
newconn = netconn_accept(conn);

/* Process the incomming connection. */
process_connection(newconn);

/* Deallocate connection handle. */
netconn_delete(newconn);

}
return 0;

}

38

18 CODE EXAMPLES 18.2 Directly interfacing the stack

18.2 Directly interfacing the stack

Since the basic web server machanism is very simple in that it only receives one request and
services it by sending a file to the remote host, it is well suited to be implemented using the
internal event based interface of the stack. Also, since there is no heavy computation involved,
the TCP/IP processing is not delayed. The following example shows how to implement such an
application. The implementation of the application is very similar to the above example.

/* A simple HTTP/1.0 server direcly interfacing the stack. */

#include "tcp.h"

/* This is the data for the actual web page. */
static char indexdata[] =
"HTTP/1.0 200 OK\r\n\
Content-type: text/html\r\n\
\r\n\
<html> \
<head><title>A test page</title></head> \
<body> \
This is a small test page. \
</body> \
</html>";

/* This is the callback function that is called
when a TCP segment has arrived in the connection. */

static void
http_recv(void *arg, struct tcp_pcb *pcb, struct pbuf *p)
{
char *rq;

/* If we got a NULL pbuf in p, the remote end has closed
the connection. */

if(p != NULL) {

/* The payload pointer in the pbuf contains the data
in the TCP segment. */

rq = p->payload;

/* Check if the request was an HTTP "GET /\r\n". */
if(rq[0] == ’G’ && rq[1] == ’E’ &&

rq[2] == ’T’ && rq[3] == ’ ’ &&
rq[4] == ’/’ && rq[5] == ’\r’ &&
rq[6] == ’\n’) {

/* Send the web page to the remote host. A zero
in the last argument means that the data should
not be copied into internal buffers. */

tcp_write(pcb, indexdata, sizeof(indexdata), 0);
}

/* Free the pbuf. */
pbuf_free(p);

}

39

18 CODE EXAMPLES 18.2 Directly interfacing the stack

/* Close the connection. */
tcp_close(pcb);

}

/* This is the callback function that is called when
a connection has been accepted. */

static void
http_accept(void *arg, struct tcp_pcb *pcb)
{
/* Set up the function http_recv() to be called when data

arrives. */
tcp_recv(pcb, http_recv, NULL);

}

/* The initialization function. */
void
http_init(void)
{
struct tcp_pcb *pcb;

/* Create a new TCP PCB. */
pcb = tcp_pcb_new();

/* Bind the PCB to TCP port 80. */
tcp_bind(pcb, NULL, 80);

/* Change TCP state to LISTEN. */
tcp_listen(pcb);

/* Set up http_accet() function to be called
when a new connection arrives. */

tcp_accept(pcb, http_accept, NULL);
}

40

REFERENCES REFERENCES

References

[ABM95] B. Ahlgren, M. Björkman, and K. Moldeklev. The performance of a no-copy api for
communication (extended abstract). In IEEE Workshop on the Architecture and Im-
plementation of High Performance Communication Subsystems, Mystic, Connecticut,
USA, August 1995.

[APS99] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. RFC 2581, Internet
Engineering Task Force, April 1999.

[BIG+97] C. Brian, P. Indra, W. Geun, J. Prescott, and T. Sakai. IEEE-802.11 wireless local
area networks. IEEE Communications Magazine, 35(9):116–126, September 1997.

[BLFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer protocol – HTTP/1.0.
RFC 1945, Internet Engineering Task Force, May 1996.

[Cla82a] D. D. Clark. Modularity and efficiency in protocol implementation. RFC 817, Internet
Engineering Task Force, July 1982.

[Cla82b] D. D. Clark. Window and acknowledgement strategy in TCP. RFC 813, Internet
Engineering Task Force, July 1982.

[HNI+98] J. Haartsen, M. Naghshineh, J. Inouye, O. Joeressen, and W. Allen. Bluetooth: Vision,
goals, and architecture. Mobile Computing and Communications Review, 2(4):38–45,
October 1998.

[Jac88] V. Jacobson. Congestion avoidance and control. In Proceedings of the SIGCOMM ’88
Conference, Stanford, California, August 1988.

[LDP99] L. Larzon, M. Degermark, and S. Pink. UDP Lite for real-time multimedia appli-
cations. In Proceedings of the IEEE International Conference of Communications,
Vancouver, British Columbia, Canada, June 1999.

[MD92] Paul E. McKenney and Ken F. Dove. Efficient demultiplexing of incoming TCP
packets. In Proceedings of the SIGCOMM ’92 Conference, pages 269–279, Baltimore,
Maryland, August 1992.

[MK90] T. Mallory and A. Kullberg. Incremental updating of the internet checksum. RFC
1141, Internet Engineering Task Force, January 1990.

[MMFR96] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective acknowledgment
options. RFC 2018, Internet Engineering Task Force, October 1996.

[Mog92] J. Mogul. Network locality at the scale of processes. ACM Transactions on Computer
Systems, 10(2):81–109, May 1992.

[Nab] M. Naberezny. The 6502 microprocessor resource. Web page. 2000-11-30.
URL: http://www.6502.org/

[PP93] C. Partridge and S. Pink. A faster UDP. IEEE/ACM Transactions in Networking,
1(4):429–439, August 1993.

[Rij94] A. Rijsinghani. Computation of the internet checksum via incremental update. RFC
1624, Internet Engineering Task Force, May 1994.

[vB] U. von Bassewitz. cc65 - a freeware c compiler for 6502 based systems. Web page.
2000-11-30.
URL: http://www.cc65.org/

[Zak83] R. Zaks. Programming the 6502. Sybex, Berkeley, California, 1983.

41

	1 Introduction
	2 Protocol layering
	3 Overview
	4 Process model
	5 The operating system emulation layer
	6 Buffer and memory management
	6.1 Packet buffers --- pbufs
	6.2 Memory management

	7 Network interfaces
	8 IP processing
	8.1 Receiving packets
	8.2 Sending packets
	8.3 Forwarding packets
	8.4 ICMP processing

	9 UDP processing
	10 TCP processing
	10.1 Overview
	10.2 Data structures
	10.3 Sequence number calculations
	10.4 Queuing and transmitting data
	10.4.1 Silly window avoidance

	10.5 Receiving segments
	10.5.1 Demultiplexing
	10.5.2 Receiving data

	10.6 Accepting new connections
	10.7 Fast retransmit
	10.8 Timers
	10.9 Round-trip time estimation
	10.10 Congestion control

	11 Interfacing the stack
	12 Application Program Interface
	12.1 Basic concepts
	12.2 Implementation of the API

	13 Statistical code analysis
	13.1 Lines of code
	13.2 Object code size

	14 Performance analysis
	15 API reference
	15.1 Data types
	15.1.1 Netbufs

	15.2 Buffer functions
	15.2.1 netbuf_new()
	15.2.2 netbuf_delete()
	15.2.3 netbuf_alloc()
	15.2.4 netbuf_free()
	15.2.5 netbuf_ref()
	15.2.6 netbuf_len()
	15.2.7 netbuf_data()
	15.2.8 netbuf_next()
	15.2.9 netbuf_first()
	15.2.10 netbuf_copy()
	15.2.11 netbuf_chain()
	15.2.12 netbuf_fromaddr()
	15.2.13 netbuf_fromport()

	16 Network connection functions
	16.0.14 netconn_new()
	16.0.15 netconn_delete()
	16.0.16 netconn_type()
	16.0.17 netconn_peer()
	16.0.18 netconn_addr()
	16.0.19 netconn_bind()
	16.0.20 netconn_connect()
	16.0.21 netconn_listen()
	16.0.22 netconn_accept()
	16.0.23 netconn_recv()
	16.0.24 netconn_write()
	16.0.25 netconn_send()
	16.0.26 netconn_close()

	17 BSD socket library
	17.1 The representation of a socket
	17.2 Allocating a socket
	17.2.1 The socket() call

	17.3 Connection setup
	17.3.1 The bind() call
	17.3.2 The connect() call
	17.3.3 The listen() call
	17.3.4 The accept() call

	17.4 Sending and receiving data
	17.4.1 The send() call
	17.4.2 The sendto() and sendmsg() calls
	17.4.3 The write() call
	17.4.4 The recv() and read() calls
	17.4.5 The recvfrom() and recvmsg() calls

	18 Code examples
	18.1 Using the API
	18.2 Directly interfacing the stack

	Bibliography

